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Objective: Polyunsaturated fatty acids such as linoleic acid are well known dietary lipids that may be
atherogenic by activating vascular endothelial cells. In the liver, fatty acids can be metabolized by cytochrome
P450 (CYP) enzymes, but little is known about the role of these enzymes in the vascular endothelium. CYP 2C9
is involved in linoleic acid epoxygenation, and the major product of this reaction is leukotoxin (LTX). We
investigated the role of CYP-mediated mechanisms of linoleic acid metabolism in endothelial cell activation by
examining the effects of linoleic acid or its oxidized metabolites such as LTX and leukotoxin diol (LTD).

Methods: The effect of linoleic acid on CYP 2C9 gene expression was studied by RT-PCR. Oxidative stress
was monitored by measuring DCF fluorescence and intracellular glutathione levels, and electrophoretic mobility
shift assay was carried out to study the activation of oxidative stress sensitive transcription factors. Analysis of
oxidized lipids was carried out by liquid chromatography/mass spectrometry.

Results: Linoleic acid treatment for six hours increased the expression of CYP 2C9 in endothelial cells.
Linoleic acid-mediated increase in oxidative stress and activation of AP-1 were blocked by sulfaphenazole, a
specific inhibitor of CYP 2C9. The linoleic acid metabolites LTX and LTD increased oxidative stress and
activation of transcription factors only at high concentrations.

Conclusion: Our data show that CYP 2C9 plays a key role in linoleic acid-induced oxidative stress and
subsequent proinflammatory events in vascular endothelial cells by possibly causing superoxide generation
through uncoupling processes.

INTRODUCTION

Atherosclerosis is believed to be a chronic inflammatory
disease, and the earliest event of coronary atherosclerosis is
characterized by endothelial activation and dysfunction [1].
Several factors are implicated in the initiation of endothelial
dysfunction of which the formation of reactive oxygen species
is believed to play a critical role during this process [2,3].

Endothelial cells are continuously exposed to circulating
lipids (e.g., dietary fatty acids) and to lipids that have accumulated

in sub-endothelial regions. These biologically active lipids play an
important role in the development of atherosclerosis. Polyunsatu-
rated fatty acids and/or their metabolites can have potent biolog-
ical effects in various cell types by functioning as signaling mol-
ecules. Evidence suggests that linoleic acid, a major dietary
unsaturated fatty acid in the American diet, has proinflammatory
and proatherogenic effects by causing endothelial cell activation
[4]. Linoleic acid-induced endothelial activation is considered to
be mediated through oxidative stress [4,5]. However, the precise
mechanism involved in linoleic acid-induced oxidative stress and
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subsequent endothelial cell activation is not known. When con-
sidering the mechanism of action of fatty acids, most attention has
been focused on the generation of vasoactive fatty acid metabo-
lites [6,7]. However, superoxide anions, hydrogen peroxide, and
hydroxyl radicals can also be generated during fatty acid metab-
olism which can modulate the effect of metabolites that are being
formed.

CYP enzymes are considered to be critical in fatty acid
metabolism in addition to cyclooxygenase and lipoxygenase
pathways. Most CYPs are primarily expressed in the liver.
Specific CYPs that are localized in extra-hepatic tissues such as
vascular smooth muscle and endothelium can contribute to the
regulation of vascular tone and homeostasis [8]. CYP 2C9, an
isoform of cytochrome P450, is reported to be a significant
source of ROS in coronary arteries [9]. This enzyme is consti-
tutively present in the endothelium, and it can be activated by
the rhythmic vessel distension that occurs during the cardiac
cycle [10]. It has been reported that CYP 2C9 is the predom-
inant linoleate epoxygenase in human liver microsomes [11]
and that the major product of this epoxidation reaction is
leukotoxin (LTX). LTX may regulate many physiological and
pathological processes. It has been reported that LTX can
induce vasodilatation [12], provide defense against infectious
diseases [13] and at high concentrations cause multiple organ
failure associated with severe burns, acute trauma and adult
respiratory distress syndrome [14–16]. Understanding how
these biologically active compounds are produced and what
role they have in normal physiological and pathological pro-
cesses could lead to new strategies to prevent endothelial
dysfunction, a common denominator of atherosclerosis.

Thus, the aim of the present investigation was to determine
whether the pro-inflammatory effect of certain dietary fatty
acids such as linoleic acid are due to the generation of reactive
oxygen species during the CYP reaction cycle or to CYP-
derived metabolites of linoleic acid such as LTX or LTD.

MATERIALS AND METHODS

Chemicals

Linoleic acid (�99% pure) was obtained from Nu-Chek
Prep (Elysian, MN). LTX and LTD were synthesized in the
laboratory of Dr. Bruce D. Hammock (University of California,
Davis, CA). Dichlorodihydrofluorescein diacetate (H2DCF-
DA) and dihydroethidine (DHE) were obtained from Molecular
probes (Eugene, OR) and sulfaphenazole was purchased from
Sigma (St. Louis, MO).

Cell Culture and Experimental Media

Endothelial cells were isolated from porcine pulmonary
arteries and cultured as previously described [17]. The basic
culture medium consisted of M199 (GIBCO Laboratories,
Grant Island, NY) containing 10% fetal bovine serum (FBS;

Hyclone Laboratories, Inc., Logan, UT), 100 units per mL of
penicillin and 100 �g per mL of streptomycin sulphate
(GIBCO). Human umbilical vein endothelial cells were cul-
tured in enriched M-199 medium containing 20% FBS as
described previously [18]. The experimental media contained
5% FBS, supplemented with linoleic acid (90 �M). Preparation
of experimental media with linoleic acid was performed as
described earlier [18].

CYP 2C9 Expression Studies

Total RNA was extracted from endothelial cells using TRI
reagent (Sigma, St. Louis, MO) according to the manufactur-
er’s protocol, and it was used to synthesize 20 �L of cDNA.
One �L of cDNA was used for PCR (total reaction volume of
25 �L) to examine the induction of CYP 2C9. The following
primers were employed in the PCRs: CYP 2C9-forward: 5�-
ATT GAC CTT CTC CCC ACC AGC-3�, reverse: 5�-GCA
AAT CCA TTG ACA ACT GGA GT-3�. The PCR mixture
consisted of a Taq PCR Master Mix Kit (Qiagen, Valencia,
CA), 1 �L of the reverse transcriptase product and 10 pmol of
primer pairs in a total volume of 25 �L. Thermocycling was
carried out according to the following profile: 94°C for 1
minute before the first cycle, 94°C for 45 seconds, 55°C for 45
seconds, and 72°C for 45 seconds, repeated 30 times and
followed by a final extension at 72°C for 7 minutes. PCR
products were separated by 2% agarose gel electrophoresis,
stained with SYBR® Green I (Molecular Probes, Eugene, OR)
and visualized using phosphor-imaging technology (FLA-
2000, Fuji, Stamford, CN).

Measurement of Oxidative Stress

Induction of reactive oxygen species was measured using
H2DCF-DA [19]. Endothelial cells were cultured in 24-well
plates and treated with linoleic acid and/or sulfaphenazole, a
specific CYP 2C9 inhibitor, for three hours. Cells were stained
with H2DCF-DA (10 �M) for the last 30 minutes of the
treatment period. In a separate experiment, linoleic acid was
treated with or without MnTMPyP, a SOD mimetic to identify
the specific reactive oxygen species being generated. After
staining, the extracellular dye was washed two times with 10.0
mM HEPES buffer, (pH 7.4) and the fluorescence was mea-
sured at an excitation wavelength of 490 nm and an emission
wavelength of 525 � 5 nm, using a multi-well fluorescent plate
reader (Molecular Devices, Sunnyvale, CA).

Measurement of Superoxide Anions

Endothelial cells were cultured in 24-well plates and treated
with linoleic acid and/or MnTMPyP, a superoxide dismutase
mimetic, for three hours. Cells were stained with DHE (10 �M)
for the last 30 minutes of the treatment period. After staining,
the extracellular dye was washed two times with a buffer
containing 145 mM NaCl, 5 mM KCl, 1.5 mM CaCl2, 0.5 mM
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MgCl2, 10.0 mM D-glucose and 10.0 mM HEPES (pH 7.4) and
the fluorescence was measured at an excitation wavelength of
520 � 10 nm and an emission wavelength of 610 � 5 nm, using
a multi-well fluorescent plate reader (Molecular Devices).

Glutathione Measurement

Determination of glutathione was carried out by an enzy-
matic recycling method described by Baker et al. [20] using
microtiter plate technology. Cellular protein was extracted by
adding 100 �L of ice-cold 0.09% sulfosalicylic acid (SSA) to
cells, which were collected from P-100 tissue culture plates.
Cells were lysed by freezing and thawing, and centrifuged at
10,000 g for five minutes. Each supernatant was collected and
used for the glutathione assay. The assay mixture contained 50
�L of the supernatant and 100 �L of the reaction buffer (125
mM phosphate buffer containing 0.225 mM DTNB, 0.302 mM
NADPH and glutathione reductase at a concentration of 1.25
U/�L). The blank contained 50 �L of 0.09% 5-SSA instead of
supernatant, and the control reaction contained the glutathione
standard in place of the supernatant. The mixtures were equil-
ibrated at room temperature for three minutes, and the reaction
was started by the addition of 100 �L of the reaction buffer to
the cell extract. The absorbance was measured at 405 nm in a
96-well plate reader (Molecular Devices, Sunnyvale, CA).

Electrophoretic Mobility Shift Assay

Nuclear protein extracts from treated cells were prepared
according to the method of Dignam et al. [21], and an electro-
phoretic mobility shift assay was performed using a commer-
cially available kit from Promega Corp. (Madison, WI). Dou-
ble-stranded oligonucleotides containing the consensus
sequence of the binding site for transcription factor AP-1
(5-CGC TTG ATG AGT CAG CCG GAA-3) or NF-�B (5-
AGT TGA GGG GAC TTT CCC AGG-3) were purchased
from Promega (Madison, WI) and labeled with [32P]-ATP
(Amersham Pharmacia Biotech, Piscataway, NJ) using T4

polynucleotidyl kinase.
Binding reactions were carried out in a 20 �L volume

containing 4 �g of nuclear protein extracts, 10 mM Tris-Cl, pH
7.5, 50 mM NaCl, 1 mM EDTA, 0.1 mM dithiothreitol, 10%
glycerol, 1 �g of poly[dI-dC] (nonspecific competitor) and
40,000 cpm of 32P-labeled specific oligonucleotide probe. The
mixture (20 �L of total volume) was incubated for 25 minutes
at room temperature, and the resulting DNA-protein complexes
were resolved on a 5 % non-denaturing polyacrylamide gel.

Analysis of Oxidized Lipids

Linoleic and arachidonic acid epoxide and diol concentra-
tions were quantified as previously described [22]. Briefly,
aliquots of cell culture media (6 mL) from triplicate experi-
ments were spiked with analytical surrogates and extracted
twice with 2 mL aliquots of ethyl acetate. The organic extracts

were evaporated, redissolved in 100 �L of methanol and ana-
lyzed using negative mode electrospray ionization and tandem
mass spectrometry on a triple quadrupole instrument (Micro-
mass Ultima, Manchester, UK).

Statistical Analysis

Statistical analysis of data was carried out using SYSTAT
7.0 (SPSS, Chicago, IL). One-way ANOVA was used to com-
pare mean responses among the treatments, with post-hoc com-
parisons of the means by Bonferroni least significant difference
procedure. Statistical probability of P � 0.05 was considered
significant.

RESULTS

Linoleic Acid Induces CYP 2C9 Expression in
Endothelial Cells

CYP 2C9 gene expression studies were carried out with
HUVEC cells as the porcine gene sequence is not available.
RNA samples were extracted from HUVEC cells treated with
or without linoleic acid, and CYP 2C9 mRNA was quantified
by RT-PCR, as described under materials and methods. A
marked increase in CYP 2C9 gene expression was observed
upon linoleic acid treatment for six hours, suggesting that this
isoform of CYP plays a major role in linoleic acid metabolism
in endothelial cells (Fig. 1).

Linoleic Acid Induces Oxidative Stress in
Endothelial Cells

In order to understand if CYP 2C9 induction is accompa-
nied by ROS production in endothelial cells, the effect of
sulfaphenazole on linoleic acid-induced oxidative stress was
monitored using the fluorescent probe H2DCF-DA. The oxida-
tive stress as observed by DCF fluorescence was increased
significantly upon linoleic acid treatment for three hours. The
ROS production by linoleic acid was significantly suppressed
in the presence of sulfaphenazole, a specific inhibitor of CYP
2C9 (Fig. 2A), suggesting that this isoform of CYP is involved
in generating free radicals upon treatment with linoleic acid.

To ascertain linoleic acid-induced oxidative stress in endo-
thelial cells, the cellular glutathione status was also monitored.
Glutathione is the most abundant low molecular weight thiol
compound in cells and plays an important role in antioxidant
defense and cellular detoxification. The cellular glutathione
pool was significantly depleted after a six hour exposure to 90
�M linoleic acid. However, co-treatment with sulfaphenazole
significantly inhibited the linoleic acid-mediated depletion of
intracellular glutathione (Fig. 2B).

MnTMPyP, a superoxide dismutase mimetic, significantly
blocked the ROS production by linoleic acid, suggesting that
superoxide radicals are a major ROS produced upon linoleic
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acid treatment (Fig. 3A). We also used DHE as a fluorescent
probe, which is currently the most accepted probe to measure
superoxide radicals in intact cells [23]. DHE is reasonably
specific for superoxide [24]. Similar to its effects on DCF
fluorescence, linoleic acid showed a remarkable increase in super-
oxide production in endothelial cells as measured by DHE fluo-
rescence. Similar to its effects on DCF fluorescence, MnTMPyP
decreased linoleic acid-induced DHE fluorescence in endothelial
cells, suggesting that superoxide radicals are a major source of
ROS produced upon linoleic acid treatment (Fig. 3B).

Role of CYP 2C9 in Linoleic Acid-Mediated AP-1
Activation

Electrophoretic mobility shift assay was carried out to in-
vestigate the DNA binding activity of the redox-responsive
transcription factor AP-1 in endothelial cells exposed to lino-
leic acid. Nuclear extracts of cells treated with linoleic acid for
six hours increased the activation of AP-1 whereas co-treat-
ment with sulfaphenazole suppressed AP-1 activation by lino-
leic acid (Fig. 4).

The Effects of Epoxide and Diol Metabolites are
Concentration Dependent

When examining the effect of LTX and LTD on oxidative
stress in endothelial cells, oxidative stress was induced neither
by LTX nor by LTD up to a concentration of 30 �M (data not

shown). Both the metabolites caused oxidative stress only at 90
�M concentration after three hours of exposure as measured by
DCF fluorescence (Figs. 5A and 5B).

To further understand the effect of these two linoleic acid-
derived metabolites on endothelial cell activation, electro-
phoretic mobility shift assay of transcription factors such as
NF-�B and AP-1 was carried out. Figs. 6A and 6B show the
effects of LTX and LTD on the activation of NF-�B and AP-1,
respectively. After a six hour exposure, LTX caused activation
of NF-�B and AP-1 at 90 �M concentration, whereas LTD
increased the activation of these two transcription factors at
both 60 �M and 90 �M concentrations. The specificity of
NF-�B and AP-1 binding was determined by supershift anal-
ysis with antibodies against p65 and c-Jun, respectively.

Endothelial Cells Generate Epoxide and Diol
Metabolites

When the cells were enriched with linoleic acid, other long
chain fatty acids (including arachidonic acid) were increased in
the media. Linoleic acid treatment increased the production of
epoxide and diol metabolites by endothelial cells (Fig. 7).
There is also evidence of arachidonic acid-derived epoxides

Fig. 1. Effect of linoleic acid (LA) on CYP 2C9 messenger RNA levels
in human endothelial cells as measured by reverse transcriptase-poly-
merase chain reaction (RT-PCR). Human umbilical vein endothelial
cells were exposed to LA for six hours. The amplified PCR products
were visualized using phosphor-imaging technology. Lane 1, control;
lane 2, LA (90 �M). The values are presented as mean � SEM of three
sets of experiments. *Significantly different from control values.

Fig. 2. Effect of sulfaphenazole on cellular oxidative stress as measured
by DCFH oxidation (A) and cellular glutathione status (B) in endothe-
lial cells exposed to linoleic acid (LA). For the measurement of DCF
fluorescence, cells were exposed to 90 �M LA in the presence or
absence of 10 �M sulfaphenazole (SP) for three hours. Fluorescence
intensity was measured using a fluorescent plate reader at an excitation
wavelength of 490 nm and an emission wavelength of 525 � 5 nm. For
the measurement of intracellular glutathione, cells were treated with 90
�M LA and/or SP for six hours. The values are presented as mean �

SEM of three sets of experiments. *Significantly different from control
values. #Significantly different from LA group.
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and diols but at significantly lower concentrations when com-
pared to those of linoleic acid. The sum of the arachidonic acid
epoxides were approximately 1 nm while the linoleic acid
epoxides were 3.5 nm. Also, the sum of the measured arachi-
donic acid diols were 15 nm while those of linoleic acid were
100 nm.

DISCUSSION

The present study demonstrates that linoleic acid can cause
oxidative stress and a pro-inflammatory response in endothelial
cells that could play a critical role during chronic inflammation
in early atherosclerosis. It is well established that fatty acids
can be metabolized by cytochrome P450s [25]. Though CYPs
are primarily expressed in the liver, some CYPs are also de-
tected in the lung, vasculature, gastrointestinal tract and heart
[26,27]. Recent data have suggested that specific CYPs local-
ized in the endothelium contribute to the regulation of vascular
tone [28]. CYP 2C9, an isoform of cytochrome P450, is a

functionally significant source of ROS in coronary arteries [9].
The present study is the first evidence to show that the expres-
sion of CYP 2C9 is increased upon linoleic acid treatment in
cultured vascular endothelial cells.

Different CYPs have been reported to be involved in the
metabolism of different dietary fatty acids. The epoxidation of
arachidonic acid and linoleic acid by CYP is well established
and is associated with the CYP 2C gene family [29–33]. It also
has been reported that different isozymes of the CYP 2C gene
family are capable of metabolizing linoleic acid and of forming
similar products [29,30]. However, the most convincing evi-
dence obtained in support of our hypothesis that CYP 2C9 is
involved in linoleic acid metabolism and is a physiologically
relevant source of ROS was provided using a specific inhibitor
of CYP 2C9. In the present study, we showed that linoleic acid
can significantly increase the oxidative stress in endothelial
cells. However, co-treatment with sulfaphenazole was found to
inhibit linoleic acid-mediated oxidative stress as observed by
DCF fluorescence. Also, the intracellular glutathione level was
significantly depleted by linoleic acid which was partially
prevented by sulfaphenazole. These results suggest that CYP
2C9 plays a major role in generating ROS upon treatment with
linoleic acid in endothelial cells. This is in agreement with
previous findings suggesting that CYPs can generate varying
amounts of oxygen-derived free radicals and are associated
with markers of oxidative damage in cultured cells [34–36].
The mechanism by which CYP enzymes generate ROS may be
through uncoupling processes which occurs during the CYP

Fig. 3. Effect of MnTMPyP on cellular oxidative stress (DCFH oxi-
dation) (Fig. 3A) and superoxide generation (Figure 3B) in endothelial
cells exposed to linoleic acid (LA). Cells were exposed to 90 �M LA
in the presence or absence of 10 �M MnTMPyP for three hours. Cells
were loaded with either DCFH-DA or DHE (10 �M) for the last 30
minutes of the treatment period. After staining, cells were washed with
HEPES buffer (pH 7.4), and the fluorescence intensity was measured
using a fluorescent plate reader at an excitation wavelength of 490 nm
and an emission wavelength of 525 � 5 nm for DCF and at an
excitation wavelength of 520 � 5 nm and an emission wavelength of
620 � 5 nm for DHE. The values are presented as means � SEM of
three sets of experiments. *Significantly different from control values.
#Significantly different from LA group.

Fig. 4. Effect of 10 �M sulfaphenazole (SP) on linoleic acid (LA)-
mediated nuclear translocation of AP-1 in porcine pulmonary artery
endothelial cells. Confluent monolayers were treated with 90 �M LA
in the presence or absence of SP for six hours. Lane 1, control; lane 2,
SP (10 �M); lane 3, LA (90 �M); and lane 4, LA (90 �M) � SP (10
�M). The values are presented as means � SEM of three separate
experiments. *Significantly different from control values. #Signifi-
cantly different from LA group.
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reaction cycle resulting in the formation of superoxide anion
radicals and hydrogen peroxide [37–39].

Several lines of evidence suggest that an imbalance between
cellular oxidant/antioxidant levels can lead to the activation of
certain redox sensitive transcription factors and the expression
of pro-inflammatory genes in endothelial cells [40,41]. Fatty
acids, and in particular linoleic acid, have been reported to
increase nuclear translocation of NF-�B and AP-1 in vascular
endothelial cells [42–44]. In the present study, co-treatment
with sulfaphenazole suppressed the activation of AP-1 by lino-
leic acid. AP-1 is a critical oxidative stress-sensitive transcrip-
tion factor in the regulation of vascular inflammation [45,46].
As sulfaphenazole also decreases the oxidative stress caused by
linoleic acid, its observed inhibitory effect on the activation of
transcription factors can be attributed to the suppression of
reactive oxygen species formed via the CYP 2C9 pathway. The
consequences of superoxide anion or hydrogen peroxide pro-
duction by CYP 2C9 may include a chronic elevation in the
activity of the redox-sensitive transcription factors and the
expression of inflammatory cytokines and adhesion molecules,
leading to endothelial cell dysfunction. Thus, scavenging ROS
during CYP reaction cycle may protect endothelial cells from
the deleterious effects of these oxidizing species.

Although liver is the most critical tissue in drug metabolism,
it is imperative to examine the effect of a pharmacological
agent in endothelial cells as considerable amount of CYPs are
expressed in these cells [8]. In addition to linoleic acid, we used

nifedipine, a known CYP2C9 inducer [9], to examine if this
compound can also activate NF-�B in endothelial cells. Inter-
estingly, we found that this compound did not induce NF-�B
activation in endothelial cells (unpublished data), suggesting
that the observed proinflammatory events may be more specific
for fatty acids than general pharmacological agents.

Fatty acids and their metabolites, in particular CYP-derived

Fig. 5. Effect of leukotoxin (LTX) and leukotoxin diol (LTD) on
cellular oxidative stress (DCFH oxidation) in endothelial cells. Cells
were exposed to LTX and LTD (60 and 90 �M) for three hours.
Fluorescence intensity was measured at an excitation wavelength of 490
nm and an emission wavelength of 525 � 5 nm. Values are mean � SEM
of three separate experiments. *Significantly different from control values.

Fig. 6. Effect of leukotoxin (LTX) and leukotoxin diol (LTD) on the
activation of NF-�B (A) and AP-1 (B) in porcine pulmonary artery
endothelial cells. Confluent monolayers were treated with LTX (60 and
90 �M) and LTD (60 and 90 �M) for six hours. Fig. 5A: lane 1,
control; lane 2, LTX (60 �M); lane 3, LTX (90 �M); lane 4, LTD (60
�M); lane 5, LTD (90 �M) and lane 6, LTX (90 �M) supershift (p65).
Fig. 5B: lane 1, control; lane 2, LTX (60 �M); lane 3, LTX (90 �M);
lane 4, LTD (60 �M); lane 5, LTD (90 �M) and lane 6, LTX (90 �M)
supershift (c-jun). Values are mean � SEM of three separate experi-
ments. *Significantly different from control values.
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metabolites, from a spectrum of unsaturated fatty acids may be
potential modulators of vascular function. To examine if the
linoleic acid metabolites can contribute to oxidative stress,
studies were carried out with epoxide and diol metabolites of
linoleic acid such as LTX and LTD. Although LTX is reported
to be involved in conditions such as acute respiratory distress
syndrome and acute lung injury [16,47], reports also suggest
that LTX causes endothelium dependent pulmonary vasodila-
tation in isolated rat lungs and in isolated pulmonary artery ring
structures [12].

We used 10–90 �M concentrations of LTX or LTD in the
present study. The epoxide and diol metabolites are produced in
exceptionally high amounts in vivo during specific pathological
events. For example, Kosaka et al. [15] showed that LTX can
reach high concentrations (�100 �M) in the serum of patients
with significant burns. Also, Ozawa et al. [48] reported con-
siderable amounts of LTX in bronchoalveolar lavage fluid
(diluted specimens) in patients with acute respiratory distress
syndrome. Furthermore, studies suggest that renal proximal
tubules can metabolize linoleic acid approximately to 41%
LTX and LTD [49]. Therefore, the concentrations of LTX and
LTD used in the present study range from physiological to
pathological levels.

It is evident from our data that the epoxide/diol metabolites
can be formed by the endothelial cells. In addition to the
epoxide/diol metabolites of linoleic acid, there is also evidence
that these metabolites can be derived from arachidonic acid but
at significantly lower concentrations. Especially after exposure
to linoleic acid, our data provide evidence that linoleic acid is
a major substrate for CYP 2C9 in endothelial cells. However,
we cannot exclude the possibility that linoleic acid may also
have an indirect effect on CYP 2C9 activity possibly via
increased release of arachidonic acid from the phospholipid
pool [50].

In the present study, the deleterious effects of the epoxide
and diol metabolites were seen only at very high concentra-
tions. For example, neither LTX nor LTD induced oxidative
stress up to 30 �M concentration as measured by DCF fluo-
rescence. On the other hand, a profound increase in oxidative
stress was observed at high concentrations of LTX or LTD. The
fact that both LTX and LTD induced oxidative stress only at
high concentrations suggests the possibility that the metabolites
may not be as toxic as the parent fatty acid in endothelial cells.
Furthermore, these metabolites and especially the diol metab-
olites, which are produced endogenously, may help to detoxify
specific fatty acids and thus be beneficial for the maintenance
of vascular homeostasis [51]. For example, epoxyeicosatrienoic
acid (EET), an extensively studied epoxide metabolite of ara-
chidonic acid, has been reported to exert an anti-inflammatory
effect in endothelial cells by inhibiting the activation of NF-�B
and by decreasing the cytokine-induced adhesion molecule
expression [52].

In conclusion, our results indicate that linoleic acid can
induce CYP 2C9 expression in vascular endothelial cells (Fig.
8). Due to possible uncoupling processes and generation of
ROS, CYP 2C9 induction appears to be responsible for in-
creased cellular oxidation and activation of redox-responsive

Fig. 8. Proposed model for the mechanism of linoleic acid (LA)-
mediated endothelial cell activation. LA treatment results in CYP 2C9
activation and production of superoxide radicals as well as depletion of
glutathione in endothelial cells. The increased oxidative stress results in
the activation of oxidative stress sensitive transcription factors such as
NF-�B and AP-1, leading to endothelial cell activation. Sulfa-
phenazole, a specific inhibitor of CYP 2C9 suppresses the oxidative
stress caused by LA treatment. The formation of leukotoxin and leu-
kotoxin diol under physiological condition may help in the fatty acid
detoxification process.

Fig. 7. Endothelial cell-derived linoleic acid metabolites. Cells were
cultured in the presence of linoleic acid (90 �M; upper trace) for 24
hours, and media concentrations of linoleate-derived epoxides and diols
were 3.2 � 0.5 nM and 90 � 15 nM, respectively. These metabolites
were present at �0.5 and 10 � 5 nM, respectively without supplemen-
tal linoleic acid. Traces of epoxy and dihydroxy arachidonates were
also observed in linoleic acid-treated cultures (data not shown). Results
are from triplicate analyses of 6 mL culture media aliquots analyzed by
LC/MS/MS.
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transcription factors in linoleic acid-treated cells. On the other
hand, linoleic acid metabolites produced via the CYP 2C9
pathways, such as LTX or LTD, may contribute to vascular
pathology only at very high concentrations.
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